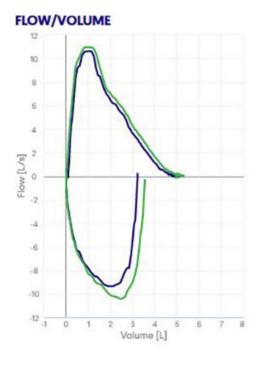
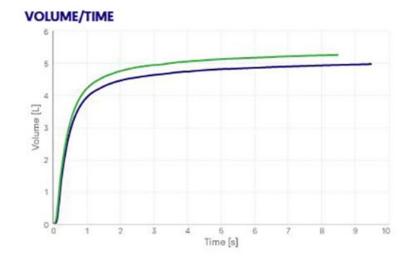
AioCare Spirometry Better Diagnostics Better Lives


A completely mobile and flexible approach


Valre

AIOCARE | TECHNICAL DATA SHEET

AioCare system specifications

Parameters VC, IC, ERV, VT, IRV Forced parameters FEV1, FVC, FEV1/FVC, FEV1/VC, PEF, FEF25, FEF50, FEF75, FEF25-75, FEV6, FIVC, PIF, FIF25, FIF50, FIF75 VPTEF Volume to Peak Tidal Expiratory Flow ERV Expiratory Reserve Volume TPTEF Time to reach Peak Tidal Expiratory Flow TPTEF/TE Time to reach Peak Tidal Expiratory Flow as a proportion of Total Expiratory time TPEF Time to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory Flow RT Rise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory flow to total expiratory volume VPTEF/VE Ratio of Volume to peak expiratory flow to total expiratory volume VPTEF/VE Ratio of Volume to peak expiratory flow to total expiratory volume	Measurement	BRT – Bronc	pirometry, FVC - Forced spirometry, chodilator Responsiveness Test, art rate, Peakflow Diary
Slow parametersVC, IC, ERV, VT, IRVForced parametersFEV1, FVC, FEV1/FVC, FEV1/VC, PEF, FEF25, FEF50, FEF5, FEF25-75, FEV6, FIVC, PIF, FIF25, FIF50, FIF75VPTEFVolume to Peak Tidal Expiratory FlowERVExpiratory Reserve VolumeTPTEFTime to reach Peak Tidal Expiratory FlowTPEF/TETime to reach Peak Tidal Expiratory Flow as a proportion of Total Expiratory timeTPEF/TETime to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to 		5002 & net	
Forced parametersFEV1, FVC, FEV1/FVC, FEV1/VC, PEF, FEF25, FEF50, FEF75, FEF25-75, FEV6, FIVC, PIF, FIF25, FIF50, FIF75VPTEFVolume to Peak Tidal Expiratory FlowERVExpiratory Reserve VolumeTPTEFTime to reach Peak Tidal Expiratory FlowTPTEF/TETime to reach Peak Tidal Expiratory Flow as a proportion of Total Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowTPEFTime to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory FlowTPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time	Parameters		
Forced parametersFEF25-75, FEV6, FIVC, PIF, FIF25, FIF50, FIF75VPTEFVolume to Peak Tidal Expiratory FlowERVExpiratory Reserve VolumeTPTEFTime to reach Peak Tidal Expiratory FlowTPTEF/TETime to reach Peak Tidal Expiratory Flow as a proportion of Total Expiratory timeTPEFTime to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory FlowTPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time	Slow parameters	VC, IC, ERV,	VT, IRV
ERVExpiratory Reserve VolumeTPTEFTime to reach Peak Tidal Expiratory FlowTPTEF/TETime to reach Peak Tidal Expiratory Flow as a proportion of Total Expiratory timeTPEFTime to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory FlowTPTEF VCRatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time	Forced parameters		
TPTEFTime to reach Peak Tidal Expiratory FlowTPTEF/TETime to reach Peak Tidal Expiratory Flow as a proportion of Total Expiratory timeTPEFTime to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory FlowTPTEF VCRatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time		VPTEF	Volume to Peak Tidal Expiratory Flow
TPTEF/TETime to reach Peak Tidal Expiratory Flow as a proportion of Total Expiratory timeTPEFTime to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory FlowTPTEF VCRatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time		ERV	Expiratory Reserve Volume
Technical parametersTPEFTime to Peak Expiratory Flow. Time from the start of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory FlowTPTEF VCRatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time		TPTEF	Time to reach Peak Tidal Expiratory Flow
Technical parametersstart of the forced exhalation to the point of Peak Expiratory FlowRTRise Time. Time required for a signal to change from 10% to 90% of the Peak Expiratory FlowTPTEF VCRatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time		TPTEF/TE	
from 10% to 90% of the Peak Expiratory FlowTPTEF VCRatio of Volume to peak expiratory flow to total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time	Technical parameters	TPEF	start of the forced exhalation to the point of
total expiratory volumeVPTEF/VERatio of Volume to peak expiratory flow to total expiratory volumeVTVolume TidalFETForced Expiratory time		RT	
total expiratory volumeVTVolume TidalFETForced Expiratory time		TPTEF VC	
FET Forced Expiratory time		VPTEF/VE	
		VT	Volume Tidal
BEV Back Extrapolated Volume		FET	Forced Expiratory time
		BEV	Back Extrapolated Volume

Flow measurement		
Sensor type for flow measurement	Thermal	
Spirometric flow measurement range	0-16 l/s	
Flow accuracy	±5% or 200 mL/s	
Resistance	<0.5 cm H2O/L/s	
Volume range	0-8 litres	
Volume accuracy	±2.5% or 50 ml, whichever is greater	
Linearity	2.5%	

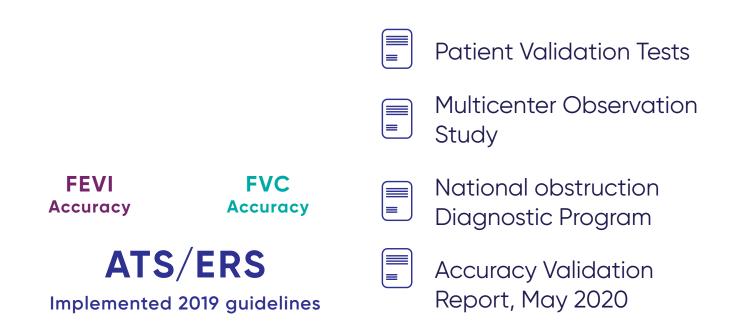
Volume integration

Flow measurement resolution	Measured 5 ml/sec, usable 10 ml/sec
Accuracy/Repeatability	Standard: ATS/ERS 2019
Automatic BTPS correction	Built-in sensors for measuring temperature, pressure & humidity
Determination of t0	Algorithmic
Expiratory impedance	<0,15 kPa/(l/s) at 14l/s

Technical

Protection of the casing against water ingress, according to IEC 60529 (spirometer elements)	IP 22
Communication	Bluetooth 4.0. Low Energy
Bluetooth frequency	2.4-2.48 GHz
Measurement frequency	100 Hz
Internal power supply	Battery (LiPo 3.7 V)
50 mA power consumption	50 mA
Dimensions	118 x 38 x 48 mm
Weight	0,3 kg

Standars, directives and material clearances


Standards	ATS/ERS 2019, EN 60601-1, EN 60601-1-2, EN 62304, EN 62366, EN ISO 14971, EN ISO 10993-1
Directives	93/42/EEC amended by 2007/47/EC, RoHS 2011/65/EU compliant
Market clearances	CE 2294

	Phone	Tablet
Operating system	iPhone 6 and next generations phones, iOS 9.0 or higher	Х
	Android 5.0 or higher	Android 5.0 or higher
		alePlay Store
App Store availability	Download from AppStore or Goo Download on the App Store Get IT ON Get IT ON Google I	
App Store availability		
App Store availability Iline panel		
line panel		
	Download on the App Store Get IT ON Google I	

Highest quality standards

AioCare + MicroGard[™] II Filter Protects patients

High level validated cleaning methods

Protect patients, staff and device from cross-contamination by using the MicroGard[™] II in-line filter.

MicroGard II filters provide 99.999% viral and bacterial efficiency against cross contamination (Nelson Test Report 1003754).

The AioCare spirometer and antibacterial/viral filter MicroGard II respectivley manufactured by HealthUp and Vyaire were tested according to ATS/ERS Standardization of Spirometry 2019.

This testing is to verify the quality of the results considering accuracy, repeatability, linearity and resistance to flow of the combination.

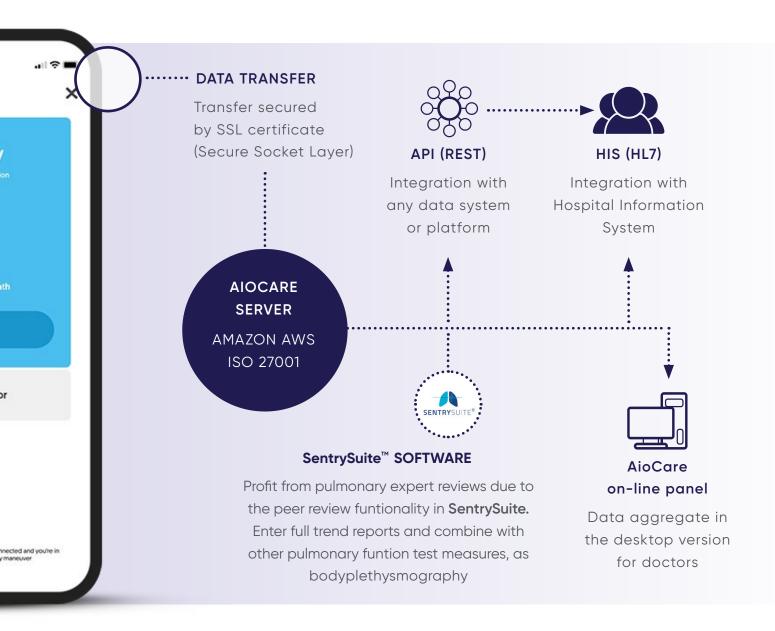
All 50 AioCare spirometers (which have been tested using MicroGard II antibacterial/viral filters) have met the full criteria described in ISO23747:2015 and ISO26782:2009 standards. The variety of waveforms in both standards encompass the characteristics seen in the population of patients.

- Accuracy, repeatability and linearity for waveforms C1-C11 (applies to 26782:2009 standard) are within the permissible error range.
- Accuracy, repeatability and linearity for waveforms C12-C13 tested on heated and humidified air as well as impedance test (applies to 26782:2009 standards) are within the permissible error range.
- Accuracy, repeatability, linearity for profiles A and frequency response (applies to 23747:2015 standard) are within the permissible error range.
- Accuracy, repeatability, linearity for profiles A 3001/min and 6001/min as well as impedance tests (applies to 23747:2015 standard) are within the permissible error range.

ISO 26782:2009

Anaesthetic and respiratory equipment – Spirometers intended for the measurement of time forced expired volumes in humans

ISO 23747:2015


Anaesthetic and respiratory equipment – Peak expiratory flow meters for the assessment of pulmonary function in spontaneously breathing humans

Server / Backend

AioCare infrastructure is supported by Amazon AWS platform. AWS provides physical security and we are operating from Central Europe region that has its DataCenter located in Frankfurt, Germany. AWS infrastructure meets all the required standards: ISO/IEC, CSA/CCM, ITAR, CJIS, HIPAA and IRS. The code runs on AWS Elastic Container Service infrastructure and its access and management is fully automated using PK/SSH security. Any manual intervention is only available to AWS System Administrator. In addition, access to any Data is restricted for specific IP addresses. Only services necessary for user operation are available from the internet, using always HTTPS protocol. The many modules that compose AioCare Solution are written in PHP v8.1 and node.js v18.1, using a Relational DataBase (MySQL8.2).

Access to data through the API is possible only after providing correct user credentials, that will grant the user a JWT token, that is only valid for the next 2hours on Web and 24hours on Mobile, after that period the user needs to authenticate again.

The app allows 3 different roles, and requires different layers of authentication:

System Administrator

- Email/Password - 2FA using email code
- IP restriction

Doctor

- Email/Password - 2FA using email code

All authentication data (ie: password) is stored encrypted and its access is fully restricted and audited. Any manually required intervention needs to be authorized by the DB administration and is fully audited. Data backups are performed daily and are automated and stored for the previous 7 days.

REFERENCES

1. Based on the Bio Burden DIN EN ISO 11737-1: Report 18AA0088

The contents of this publication may differ from the current approval of the product or service in your country.

÷ 📰 🔜 🗎

BENELUX PT Medical BV Kapteynlaan 13 9351 VG Leek Nederland T +31(0) 594 587 280 F +31(0) 594 587 288 mail@ptmedical.nl www.ptmedical.nl

GLOBAL HEADQUARTERS

Vyaire Medical, Inc. 26125 N. Riverwoods Blvd. Mettawa, IL 60045 USA

Poland

HealthUp S. A.

Twarda 18

AIOCare

00-375 Warsaw

MICROGARD[™] II FILTER SENTRYSUITE[™] SOFTWARE

Vyaire Medical GmbH
 Leibnizstrasse 7
 97204 Hoechberg
 Germany

For international use only.

Trademarks are the property of their respective owners.

© 2023 Vyaire Medical, Inc. or one of its affiliates. All rights reserved. Vyaire and the Vyaire Medical logo are trademarks or registered trademarks of Vyaire Medical, Inc. or one of its affiliates. Please read the complete Instructions For Use that come with the devices or follow the instructions on the product labelling. VYR-INT-20000237 | 2.0

